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The dipolar Frenkel excitonic insulator phase of an impurity 
in a liquid solvent: results 

M D Winn and D E-Logant 
Physical Chemistty Laboratory, Oxford University, South Parks Road, Oxford OX1 392. UK 

Received 16 February 1993 

Abstract. In a previous paper we have developed a mean field uleary for the dipolar Frenkel 
excitonic insulator (€1) phase of an impurity al infinie dilution in a liquid solvent or disordered 
matrix, a siwation of experimental relevance. Based on this, we here present numerical results 
for the location of the €1 uansltion, and fhe impurity dipole moment in the dipolar El phase, 
using linear classical liiuid state theories. For a non-polar polarizable solvent we wnsider 
impurity and solvem atoms of (i) identical hard-sphere diamefer, and (i) differing hard-sphere 
diameer. We also generalize the previously studied model to allow for dipolar p o l d l e  
solvent molecules, and present example results. We consider in particular the case of alkali 
metal atoms dissolved in methylamine, and conclude thal a dipolar EI phase is possible for Li 
and Cs. 

1. Introduction 

In two previous papers [1,2] (hereafter referred to as I and Ir), we have developed the 
theory of a dipolar Frenkel excitonic insulator (El). In I, we introduced the model system, 
and described two alternative analyses of it. The first termed ‘pairing theory’, is the more 
rigorous, but suffers from two disadvantages. First, although it is able to locate the point 
at which a system is unstable with respect to a Frenkel EI phase, it cannot describe the 
El phase itself. Second, the full pairing theory (including ‘double-excitation’ terms) is 
readily soluble only for latticebased systems. The second analysis does not have these 
disadvantages. but the Hartree decoupling of electronic operators upon which it is based 
requires some justification. This was largely achieved in I, where excellent agreement with 
pairing theory was found for lattice-based examples. 

In II, we therefore extended the Hamee analysis to spatially disordered systems. For 
a given atomic configuration, diagonalization of the Hartree Hamiltonian gave a self- 
consistency relation for the atomic dipole moments, a non-zero solution to which implies a 
dipolar El phase. An explicit expression was found for the dipole moment of an impurity 
at infinite dilution in a solvent, again for a given atomic configuration. The ensemble of 
atomic configurations was then taken into account via a mean field approximation. The 
results presented in II were given in terms of the average reaction field factor of the system, 
a microscopic prescription for which was described. One purpose of the present paper is to 
give explicit results based on calculations of the average reaction field factor, using linear 
classical liquid state theories. This is the subject of section 2. 

The possibility of a Frenkel El phase occurring in impurity systems has been suggested 
by results from a number of experiments [3-5]. In addition, a quantum molecular dynamics 
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simulation [6] of Na in molten NaBr yielded a dipolar atomic state for the excess Na, in 
contrast to the F-centre-like states found for the heavier alkali metals. More recently, there 
has been experimental support for this finding 151. We also mention the path integral Monte. 
Carlo simulations of Li in liquid ammonia [7.8]. The first calculation [7] yielded a dipolar 
Li atom [9], while a more recent calculation [SI with different model potentials predicted, 
in contrast, that Li ionizes in liquid ammonia. This latter result is, in fact, more in keeping 
with experimental results on the alkali metals in liquid ammonia (see, for example, [lo]). 
In the dilute regime, those results that are attributable to the electron are independent of 
the cation involved, and one consequently infers ionization of the alkali metal atom with at 
most loose pairing between the solvated cation and the solvated electron. 

Liquid ammonia is, however, only one of a large range of solvents. most notably amines 
and ethers, in which the alkali metals form a dilute solution [IO], and these other solvents 
are likely to be better candidates for the observation of a Frenkel ~r phase. The dielectric 
constant of amines and ethers is generally lower than that of ammonia, and the cation- 
electron interaction is consequently stronger. Hence, the alkali metal impurities do not 
necessarily ionize, and evidence has emerged for a variety of distinguishable species that 
may arise from a single metal atom, ranging from a loose ion pair to a solvated atom [IO]. 
Further species arise when more than one alkali atom is involved, but in the present study 
we are solely concemed with a single impurity. 

The alkali metal species that have been distinguished in these systems a=, however, 
invariably assumed to be spherically symmetric. What we suggest in this paper, via some 
example calculations, is that non-spherically symmetric species (dipolar atoms) are a further 
possibility. 

Most of the experimentally studied impurity systems described above involve a solvent 
species possessing a permanent dipole moment, and such systems cannot be described by 
the atom-based model studied in I and 11. The generalization, within the class of linear 
liquid state theories, to dipolar polarizable solvents is, however, relatively straightfonvard. 
The necessary formalism is set out in section 3.1, and some sample results are given in 
section 3.2. We find that the probability of a dipolar impurity is greatly enhanced by a 
dipolar solvent. Finally, a short summary is given in section 4. 

M D Winn and D E  Logan 

2. Numerical examples for non-polar solvent 

The mean field solution pertaining to the dipolar El phase of an atomic impurity in a 
non-polar polarizable solvent was derived in II. The impurity dipole moment, pi, is 
given explicitly in terms of the transition dipole moment of the impurity atom, Mi,  the 
static polarizability of an isolated impurity atom, aio, and the average reaction field factor 
associated with the solvent, G, as follows. When cui& < 1, the only solution is 

pi = 0 (2.1) 

i.e. the non-dipolar state of the impurity. When cui& =- 1, however, there is a further 
solution 

representing a dipolar impurity state that is energetically stable with respect to the non- 
dipolar state. The central quantity in a calculation of pi is clearly G, and a microscopic 



Frenkel El phase of impurity system 3123 

prescription for this quantity was given in II in terms of the solvent number density, p, 
and the renormalized static polarizability of a solvent atom in the condensed phase, a. In 
calculating G, the average is taken over a spherically symmetric reference potential, which 
we here assume to be of hard-sphere form. 

The calculation of G is necessarily approximate, and in the present paper we consider 
solely the class of linear approximations of classical liquid state theory. Before presenting 
the results of specific linear theories, we mention again two properties, discussed in II, that 
a well behaved theory should reproduce. First, for linear theories, and when the impurity 
and solvent atoms have an identical hard-core diameter U ,  the Onsager saturation property 
[ 111 implies the inequality 

G 6 8/u’. (2.3) 

Using (U), this inequality implies an upper bound to [,U, 1. Second, G is given to lowest 
order in pa  by 

G = pa 1 d R g Z ( R )  fTr(T(R)T(-R)) + O[(pd21 

(2.4) 

where g z ( R )  is the pair distribution function appropriate to the hard-sphere potential, and 

3 R R  I 
IRIS IR13 

T(R) = - - - (2.5) 

is the dipols-dipole interaction tensor, with I the identity matrix. 

2.1. Equisized hard spheres 

In this subsection we assume the hard-sphere. diameters associated with solute-solvent 
and solvent-solvent interactions to be equal, and denoted by U (unequal diameters are 
investigated in section 2.2). The advantage of assuming equal diameters is that the reference 
distribution functions are independent of whether a site is a solute or solvent atom. While 
this assumption may not appear realistic, we show in section 2.2 that the change in the 
numerical results upon adopting differing diameters can largely be accounted for simply 
by an appropriate choice of the reduced impurity polarizability in the calculation of this 
subsection. 

We use U to define the following set of reduced variables 

5, !O - - aiou-3 Go aou-3 & = au-3 p* = pu ’ 6 = Gu’ (2.6) 

where we have introduced ao, the static polarizability of an isolated solvent atom. In II, we 
showed that (for linear theories) G is precisely the quantity that relates the renormalized 
solvent polarizability, a, to the bare solvent polarizability, ao. In terms of the above reduced 
variables, this relation is 

6=Go(l-&io)-1.  (2.7) 

The most convenient route for the calculation of G is thus via available theories for a. 
Different linear theories correspond to different closures to (2.7), and we now consider 
three such. 
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Possibly the most accurate linear theory is the SSCA of Wertheim [ 121, which corresponds 
to the reference version of Patey's LHNC [ 131. This approximate theory is analytically soluble 
in one limit, namely when the reference pair distribution function, &(E),  is taken to be of 
step-function form. The relevant equations an then formally identical to those of the MSA 
for the case of non-polarizable dipolar molecules, and the closure to (27) is 1121 

(2.8) 4rp*G = 4(6/8)  - q(-6/16) 

where 

The right-hand side of (2.8) increases monotonically from 0 to 00 as 6 varies between 
0 and 8. It follows from this that 8,  as determined from (2.7) and (2.8). is always less than 
8, and the Onsager saturation propelty (2.3) is correctly reproduced. Thus, from (2.2) the 
value of Ipjl predicted by the MSA has a limiting value of &[I-  (l/646~o)]'~z. To lowest 
order in pa. the MSA equations predict 

(2.10) 

which is precisely (2.4) for the assumed case of a step-function gZ(R). 
The step-function form for g z ( R )  assumed by the MSA is not realistic, and we do not 

expect the MSA to give quantitatively reliable answers. An altemative closure to (2.7), 
which incoprates the effects of a realistic hard sphere gz(R), was used by Prat~ [141, and 
is based on the free-energy Pad6 approximant of Rushbrooke and co-workers 1151. In the 
present notation, the closure relation is 

where 

(2.12) 

and I&*) is an analogous three-body integral. With gz(R) appropriate to a hard-sphere 
fluid, the following Pad6 approximants [14] give accurate values for these integrals over all 
realistic liquid densities: 

1 1 - 0.3618~' -0.3205~ 
(1 - 0.5236~')~ m*) = ?( (2.13) 

(2.14) 2.70797 ( 1 - 0.59056p' +0.20059p*2 

Note that these are the expressions appropriate to (2.1 1). and differ by constant factors 
from those given originally [16,17]. The assumption of a step-function form for gZ(R) is 
equivalent to setting p" = 0 in (2.13) and (2.14). 

2.741 56 2.70797 + 1.689 1 8 ~ '  - 0.3157~'~ 
h ( P ' )  = - 
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has a 
limiting value of Mi, corresponding to the largest possible dipole moment obtainable within 
the assumed basis. Although the Onsager saturation property (2.3) is not recovered, it is in 
fact satisfied for all physical densities. As pa -+ 0, 8 is given by 

The term 8, as given by (2.1 1). is an unbounded function, and consequently 

8 = 8lrp*612(p*) + O[(ply)']. (2.15) 

With the identification (2.12), we see that the Pad6 approximant of Pratt reproduces fully 
the limit (2.4). 

A second and simpler Pad6 approximant to 6 was suggested by Chandler and co-workers 
[181. These authors gave as the closure to (2.7) 

where I&*) and 13@*) are again given by (2.13) and (2.14). The behaviour of this 
approximant in the low-p*o?. and high-oi limits is identical to that of the Pratt approximant 

For the sake oi  comparison, we also give the form of 8 when the solvent is treated as 
a continuum. From continuum dielectric theory [19], the reaction field factor is given by 

(2.17) 

where E is the static dielectric constant of the solvent, and d is the radius of a cavity 
within which the impurity resides. To apply this expression, we must choose an appropriate. 
value for d, and relate E to p and 00. We use Onsager's prescription for the cavity radius, 
4rrd3/3 = I / p ,  and evaluate E via the Clausius-Mossotti relation, obtaining 

(2.18) 

As for the above Pad6 approximants, the 6 predicted by continuum dielectric theoly 
is unbounded, and again has a limiting value of M,. Further, it is clear that (2.18) 
does not yield the correct lowdensity limit, being quadratic in p* rather than linear. The 
spurious factor of p' arises from the Onsager prescription for the cavity radius, d .  An 
alternative choice for the cavity radius would be d = 0 ,  whence we recover, in the low- 
density limit, (2.10) with a replaced by l y ~ ,  which is the correct limit for a structltreess 
solvent. Unfortunately, (2.17) then yields unrealistically low values for 8. We therefore do 
not consider further the d = U case. 

We thus calculate the impurity dipole moment, lpi//Mi, from (2.1) (&io8 c 1 )  or (2.2) 
(&io8 =- 1). and (2.7). with one of the above closure relations. The required input parameters 
are 6io,& and p". We postpone modelling of specific experimental systems until section 3, 
and here simply evaluate the above approximate theories for a physically sensible range of 
parameters. 

In figures 1 and 2, we give sample results for 40 = 0.889. This value represents one 
of the most favourable cases for the formation of a dipolar impurity atom: that of a small 
polarizable impurity, e.g. Li (ai0 = %A3 [20]) with U taken equal to 3A. h figure 1, for 
this choice of aiio and for each approximate theory described above, we plot the values of 
the solvent parameters, p* and 60, at which there is a transition from the normal insulating 
(non-dipolar) state to the Frenkel El (dipolar) state. The region below (above) each line 
corresponds to values of pi and aiio for which the impurity is in a nondipolar (dipolar) 
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state. The range of p" considered covers all physically realizable densities, and the range 
of 50 considered is typical of appropriate solvents. 

It is clear that the formation of a dipole moment on the impurity site is favoured by 
high solvent density and high solvent polarizability. This is, of course, because a dense 
polarizable solvent produces a larger reaction field at a dipolar impurity site than a low- 
density weakly polarizable solvent A dipolar impurity state is also favoured by a high 
impurity polarizability, and, as we have mentioned, the high value of &io that we have 
taken is one of the most favourable cases. 

It is clear from figure 1 that, with gz(R)  taken as a step function, the MSA and the 
two Pad6 approximants considered give comparable results. All predict that a dipolar 
impurity state exists only over a small range of reasonable solvent parameters. With a more 
realistic form for R ~ ( R ) ,  however, both Pad6 approximants predict an increased likelihood 
of a dipolar phase, and there is a wide range of solvent parameters for which it occurs. 
Assuming the latter results to be the most reliable, it is clear that the MSA underestimates 
the likelihood of a dipolar state, and that this is due to the unrealistic form of gz(R)  assumed. 
Finally, continuum dielectric theory clearly overestimates the likelihood of a dipolar state. 

M D Winn and D E Logan 

0.0 I . . , I , . I . . , . , . . 1 
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k 
F w m  I. Values of Le solvent parameters. p' and Bo. Pi- 2. The reduced impurity dipole moment, . . .  
atwhich a bansition From the normal insulating phase 
10 the dipolar U phase occurs. for Bio = 0.889. ?he 
resuILs of the MSA (curve A). the Pad6 of !"It [I41 (B) 
and the Pad6 of Chandler and co-workers [IS] (C) with 
a step function g z ( R ) .  Le Pad6 of !"ti (D) and the 
Pad6 of Chandler and co-workn 0 with a realistic 
hard sphere g ( R ) .  and of continuum dielecbic Wry 
0 are shown. 

lpYl/M,, as a function of p*. for Go = 0.140 and 
Gjo = 0.889. m e  cums are labelled as in figure I .  

In figure 2, we illustrate the growth of the impurity dipole moment with solvent density, 
as predicted by each of the approximate theories considered, for &io = 0.889 and 50 = 0.140. 
For densities slightly greater than the transition density, the dipole moment grows with the 
mean field exponent of 1/2. For higher densities the dipole moment saturates, as discussed 
earlier. 

2 2 .  Different hard-sphere diameters 

In this subsection, we relax the assumption of equal hard-sphere diameters. We denote the 
impurity-solvent hard-sphere diameter by uir, the solvent-solvent hard-sphere diameter by 
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usS. and we further define an impurity-impurity diameter, uit, via 

3 127 

uiis = ;(us + Uij). (219) 

We then define 

x = Uii/US, (220) 

which is the ratio of the 'size' of the impurity atom to the 'size' of the solvent atom. 
The Pad6 approximants used in the previous subsection are based on the two- and 

three-body integrals, I&*) and 13(p*). and it is relatively straightforward to generalize 
these integrals to the case ui, # us. However, the Pad6 approximants were designed so 
that these two integrals. represent (approximately) higher-order terms in the expansion of 
G. To use modified versions of the two- and threebody integrals in the Pad6 approximants 
would thus be to overestimate the influence of a value of uk which differs from usS. We 
do not therefore consider the Pad6 approximants in this subsection, and concentrate instead 
on the MSA solution for the case U" # us,. We have seen in the previous subsection that, 
because of the simplistic form assumed for g l ( R ) ,  the MSA underestimates the likelihood of 
a Frenkel E1 phase. The results of the MSA are, however, not unreasonable, and allow one 
to gain an appreciation of the effects of unequal hard-sphere diameters. 

The solution of the MSA for the case uiis # us is quite involved, and so we merely 
state the result here, assigning the derivation to the appendix. We choose the solvent- 
solvent diameter, us, to be the unit of length, and define reduced variables via (2.6) with U 

replaced by U,. The dipole moment on the impurity is given by equation (2.1) or (2.2). with 
G replaced by Cis, where GiS is defined to be the average reaction field factor determining 
the reaction field at the impurity site. We thus need to know crioCiS = &OD", and this is 
given by (see (A.27)) 

(2.21) 

Here, the renormalized solvent polarizability, 6, is precisely the quantity calculated in the 
previous subsection, and & is the reaction field factor, which determines the reaction field 
at a solvent atom and which enters the calculation of Oi; @ equals 5" only for the case 
ui, = usS. Finally, the function q" is given by equations (A.28XA.31). 

1.1 

1 a 

0.9 

0.8 
0.7 
0.6 
0.5 

0.04 I ,  I I , ,  , . I , .  . . , I 

0.0 0.05 I 0.1 0.15 
a. 

Figure 3. As f i g u ~  1. but for Ihe MSA only. Curves are labelled by h e  value of I; = qi fa.. 
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As an example, we again take the favourable value 6;o ( Y ~ ~ u ; ~  = 0.889, and consider 
the dependence of the impurity dipole moment on the size of the impurity, via its dependence 
on Z. In figure 3, for this choice of 6;o and for various values of Z, we plot the values of 
the solvent parameters, p' and Go, at which there is a transition from the normal insulating 
state to the dipolar E1 state, as calculated in the MSA. It is clear from figure 3 that the 
dipolar state is favoured by small values of X. This is as expected, since a small impurity 
atom (uti, and hence E, small) permits a closer approach of the solvent atoms. consequently 
enhancing the reaction field. 

Equation (2.21) can be written in the form 

zi0@ = ~ Y ~ ~ u ; ~  x a(i + x ) ~ E "  (2.22) 

The first factor on the right-hand side incorporates that part of the X dependence that reflects 
the closeness of approach of the solvent and impurity atoms: the remaining X dependence 
is included in the second factor. We can judge the relative contributions of these two factors 
to the overall is varied, and doing so 
we find the X dependence of the second factor to be small. For example, holding the first 
factor a i o ~ i ; ~  fixed at 0.889, and taking do = 0.15, the critical density at which a transition 
takes place is p* = 0.946 for 8 = 0.5 and p* = 1.106 for X = 1.1. The principal effect 
of changing the size of the impurity (i.e. Z) is thus to change the closeness of approach 
of the solvent and impurity atoms, as embodied in a different value of a~iou,;~, and the 
remaining X dependence can, to a good approximation, be neglected. In that case, we 
have Gio@ Y ai0u;3 x e, and the calculation is precisely as in section 2.1 but with Gio 
replaced by an effective value a i ~ u ~ ; ~ .  

dependence by holding one of them fixed as 

3. Extension to polar solvents 

3.1. Formalism 

The results of section 2, based on the theory of 11, pertain to a model in which both impurity 
and solvent sites are atomic in nature, with a four-level electronic basis. In arriving at the 
final solution, the electronic degrees of freedom are integrated out, leaving a classical 
problem given in terms of the polarizabilities of the impurity atom, a ; ~ .  and the solvent 
atoms, CYO. Strictly speaking, these polarizabilities are those corresponding to the assumed 
four-level basis, but in practice we have treated the polarizabilities as input parameters 
obtained from experiment. In a similar way, although we have assumed the solvent to be 
atomic, it seems admissible to generalize the results obtained to dipolar polarizable solvent 
molecules. As discussed in section 1, this significantly increases the range of systems we 
may model. 

We showed in I1 that diagonalization of the Hartree Hamiltonian for a given centre-of- 
mass configuration implies the following equation for the impurity dipole moment: 

(3.1) P; =aioEi(l +ai01 E.[2/M;)-11z. t 

In the absence of an external field, the local field at the impurity site is given by 

where Ti] 
polarizable solvent molecules, with total moment 

T(R, - Ri). We now diverge from the analysis of 11, and assume dipolar 

(3.3) Pj = pno(i) + ao(.f) * Ej i # i 
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where the index j now refers to both the position and orientation of solvent molecule j ;  
m o ( j )  is the permanent dipole moment of the isolated solvent molecule, and the solvent 
polarizability is taken to be a tensor, a o ( j ) ,  to allow for possible anisotropy. The local 
field at a solvent site. Ej .  is again given by (3.2). 

To obtain an explicit expression for E;, for a given configuration of centre-of-mass 
positions and permanent moment orientations, we iterate (3.2) with the aid of (3.3). yielding 

Ei = 0 . p; + F ( i j )  mo(j). (3.4) 
j 

The first term on the right-hand side is precisely that obtained in the case of a non-polar 
solvent, and describes the reaction field at the impurity due to p;. A microscopic prescription 
for G is given in II. The second term describes the field due to the permanent dipoles of 
the solvent molecules, and the first few terms in F((ij) are 

F ( i j )  = Tij + 1 ; k  ao(k)  l b j  + . . . (3.5) 
k 

More precisely, F(ij)  is the sum of all T-tensor products that begin at the impurity site, 
end at the solvent site j ,  and do not have the impurity as an intermediate site. A product 
of n 1-tensors is associated with n - 1 factors of ao(j). 

It is clear from (3.1) that E; and p; are parallel, so that we can write, 

Ej = hp; (3.6) 

where 1 is thus defined. For the special case of a non-polar solvenr it follows from (3.4) 
that E; = B * pi. and we identify h as one of the three eigenvalues of G (see II). For 
the general case studied here, we use (3.6) to eliminate Ei from equations (3.1) and (3.4), 
yielding 

IWl* 1 -- Mi' -'-- CY;,h* (3.7) 

(3.8) 

Equation (3.7) is formally identical to (2.18) of II. 
Equation (3.8) constitutes an inhomogeneous matrix equation for p, , and in consequence 

p; is invariably non-zem. Only in the limit of a non-polar solvent is the equation 
homogeneous, allowing a solution p; = 0. Thus, the local field at the impurity due to 
the permanent moments ensures a dipolar atomic impurity and, in contrast to the case of 
a non-polar solvent, there can be no strict transition from a non-polar impurity state to a 
dipolar Frenkel E1 state. We expect, however, a changeover under appropriate conditions 
from a small impurity moment, arising from the random local field at the impurity, to a 
larger impurity moment, characteristic of the EI phase. We further expea this changeover to 
be rapid due to the co-operative effects that stabilize the impurity moment in the EI regime. 

The solution of (3.7) and (3.8) yields values for p; and A for each configuration of 
site centre-of-mass positions and solvent moment orientations. Over the ensemble of such 
configurations, there ate (correlated) distributions for the values of p; and 1. In order 
to obtain a typical value of Ip;l with which to characterize the system for each set of 
input parameters, we suggest an extension of the mean field approximation of 11. First, 
we calculate the ensemble average of the right-hand side of (3.8) with the magnitude and 
onentation of p;  held fixed at arbitrary values. For the special case of a non-polar solvent, 
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this is equivalent to replacing L7 by its ensemble average G, which is precisely the mean 
field approximation of 11. As we shall shortly show, the above average of the right-hand 
side of (3.8) is an odd function of p,, and we therefore write this quantity as (A)ipi, with 
(A)[ a function of IpiIz. Equating this quantity with the left-hand side of (3.8), there are 
two possibilities. First, pi = 0, corresponding to a non-dipolar impurity. Although the 
possibility of such a solution is a direct consequence of the mean field approximation, we 
interpret it as representing a situation in which there is only a small impurity moment arising 
from a random local field. The second solution is h = (A); which, when substituted into 
(3.7). yields the impurity dipole moment. Such a solution is interpreted as a hue Frenkel 
E1 phase, with the co-operative effects that stabilize the impurity dipole embodied in (A)!. 
Thus, the mean field approximation replaces the continuous changeover in the nature of the 
impurity discussed above by a well defined transition. 

To proceed with the mean field approximation, we consider a graphical analysis of the 
quantity (A)i. As for the non-polar case studied in II, configurations of the system are 
weighted by a spherically symmetric reference potential. This was the only contribution to 
the Boltzmann factor considered in II, and here would lead to a zero contribution to (A); 
from the second term on the right-hand side of (3.8). To obtain a non-zero contribution, we 
therefore include in addition the non-spherical dipolar interaction energy in the Boltzmann 
factor. 

The Boltzmann factor for a given configuration can be written in terms of the many- 
particle Mayer f -function. Following the work of Wertheim on dipolar polarizable fluids 
[21-25], we expand the s-particle Mayer f-function for the full potential as 

M D Winn and D E Logan 

m - 
fs(1. . .s)  = fR,r(l.. .s) t [1 + fR.r(l ...s)]z[-p&(l. . . s ) l ” / f l !  (3.9) 

”=I  

where /3 = (kT)-’ is the inverse temperature, f ~ . ~ ( l  . . . s) is the s-particle Mayer f -function 
for the reference potential, and & ( I  .. .s) is the s-particle dipolar interaction energy. The 
latter is the sum of all T-bondchains connecting s points. If all points are solvent sites, then 
the T-bond chain connects the permanent moments of two solvent sites. Altematively, if 
the impurity site is one of the s points, then the T-bond chain is such that the impurity does 
not form an interior stage, and the T-bond chain either connects the permanent moments of 
two solvent molecules, or the impurity moment with the permanent moment of a solvent 
molecule. A product of n T-tensors is associated with n - 1 interior stages, each of which 
occurs with a factor of ao(j). 

The graphs contributing to (A); thus include both a T-bond chain from (3.8). and further 
chains from the 4*(1. . .s) terms of (3.9). In addition, there are fR.r(l. . .s) connectors 
representing an average over the reference system. To analyse these complex graphs, it 
is convenient to make use of the following formal equivalence. In the model system, the 
isolated impurity is a polarizable atom with no intrinsic dipole moment, although one is 
stabilized in the E1 phase. The above graphs are, however, reproduced precisely if we heat 
the impurity site as a non-polarizable atom with a constrained permanent moment, pi. 

With this, we can make direct contact with Wertheim’s work [21-25] on dipolar 
polarizable fluids, to which the reader is referred for much of the following notation. From 
his results it can be shown that: 

(3.10) 

The function c is precisely as defined by Wertheim, with the proviso that the moment of 
site i takes the special value pi and fhe polarizability of site i is zero. Consequently, the 
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impurity cannot be an interior stage of a T-bond chain. Specifically, c(i) is the sum of 
all graphs free of 0-Ap with one extra chain which leaves the graph at i, any number of 
chains connecting permanent moments, and hz bonds (which qmxent  the average over the 
reference system). 

For the special case of a non-polar solvent, the only moment is that on the impurity 
site, pi; c(i)  then consists of graphs with one extra chain, which begins at site i and leaves 
@e graph at i ,  and any number of chains that begin and end at site i .  It is these latter 
chains, which describe the contribution of the dipolar interaction energy to the B o l t "  
factor, that were neglected in the analysis of II. As we shall shortly see, these chains do not 
contribute in a linear theory. 

Retuming to the case of a polar solvenf the presence of an extra chain means that the 
total number of factors of the permanent moments contributing to each graph in c(i)  must 
be odd. Since every solvent site must occur with an even number of permanent moments 
(otherwise the integration over the orientation of that point would yield zero), c(i)  must be 
an odd function of pi, and consequently (A)i is an even function of pi. In practice, we 
later neglect graphs in c(i) that are non-linear in pi, whence (A): is independent of pi, and 
we recover solutions of the form (2.2). More generally, (A)i .  and hence the self-consistency 
relation for pi, constitutes an infinite-order polynomial in pi. 

In order to find an expression for (A) i ,  it is convenient to perform a topological reduction 
of the graphs contributing to c(i) ,  using the two levels of renormalization described by 
Wertheim 1231. The I-R renormalization results in graphs free of I-AP, and with factors of 
wdi) replaced by 

m(j) = mdj) + P a o ( j )  . c ( j ) .  (3.11) 

The renormalized dipole moment, mb), is enhanced relative to that of the isolated molecule, 
m o ( j ) ,  due to interactions with surrounding molecules embodied in the second term 
of (3.11). In 1-R form, c(i) is identical to the function w(i )  introduced by Wertheim [23]. 
The 2-R renormalization results in graphs free of 2-AP, and with factors of ao( j )  replaced 
by the renormalized polarizability 

a(j) = + B-'ao(j)  . C ( j )  ' a o ( j )  (3.12) 

where 

(3.13) 

In 2-R f m ,  c(i) is identical to the function y( i )  of Wertheim [23]. In fact, the 2-R 
renormalization requires an additional correction to properly account for ring-chains [U], 
but since this is not required for the linear theories we consider below, we do not go 
into it here. In general, the above renormalizations apply to all stages of a graph, but 
because we have taken the impurity to be formally non-polarizable, the renormalizations 
(3.11) and (3.12) apply only to the solvent sites. 

In 2-R form, (h)ipi = p-'y(i) can thus be written in terms of graphs free of O-M, I-AP 
and 2-AP, with a renormalized solvent permanent moment, m(j), and a renormalized solvent 
polarizability, a(j). We now make the restriction to linear theories, which we define to be 
as follows. Each graph contributing to y(i) consists of hz-connectors associated with the 
reference potential, and a single superchain that begins at i and leaves the graph at i. A 
superchain is defined [21] as a chain of chains placed end-to-end, and we assume here the 
constituent chains to be linear, in the sense that each solvent site is associated with only 
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one stage of the chain. With the assumption of a linear theory, the distinction between the 
y(i) function defined here and that of Wertheim disappears, since neither includes graphs 
with interior stages at i. 

Every graph is thus assumed to be linear in pi, i.e. we ignore graphs in p?", 
n = 1.2. .  .. Further, every solvent site is assumed to be associated with at most either 
a factor of m(j)m(j), if two chains meet at the site, or a factor of a(j) ,  if the site is 
an interior stage of a chain. With the assumed linearity of g(i) in pi, we define a pi- 
independent tensor Y(i) via g(i) = Y(i). pi. The quantity of interest, (A){, is thus obtained 
from 
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( ~ ) ~ p ~  = B-'Y(i) .pi (3.14) 

and can be identified as an eigenvalue of B-'Y(i). 
Considering the non-polar case, with m(j) = 0 V j ,  the only non-zero superchain is 

that consisting of a single extra chain, and the function p-'Y(i) is found to be formally 
identical to the average reaction field factor, G, studied in II. Averaging over the solvent 
orientations, and consequently replacing a(j) by a, we thus recover the linear theories 
evaluated in section 2. 

In the case of a polar solvent, for each graph in which solvent site j is associated with 
a factor of a(j), there is another graph identical to the first except that solvent site j is 
associated with a factor of m(j)m(j). For the polar case, we therefore obtain all graphs in 
B-'Y(i) from those corresponding to the non-polar case by replacing each factor of a(j) 
at the solvent sites by a(j) +pm(j)m(j), (the factor of ,!3 arises from the additional chain 
implied). With only one stage at each solvent site, the average over solvent orientations is 
trivial. The orientational average of m(j)m(j) yields (1/3)m21, and that of a(j) yields 
01, where m = Iml and a = (1/3)Tr[a]. The function B-lY(i) is thus identical to G, with 
the replacement of a by (Y + (l/3)pmZ. 

(A)i = GI(Y + (l/3)BmZl. 

The (triply degenerate) eigenvalue of B-'Y(i) is thus 

(3.15) 

Equation (3.15) is the central result of the preceding graphical analysis. For aioC[a + 
(l/3)Bm21 > I ,  we simply replace A in (3.7) by (A) i ,  as given by (3.15). We thus 
recover (22)  for the impurity moment in the Frenkel EI phase, with G((Y) replaced by 
G[cu + (1/3)Bm2]. When aioG[a + (1/3)pm2] c 1, however, the only solution is 
the trivial solution, pi = 0, corresponding to the non-dipolar state of (21). The mean 
field approach thus gives a transition from a normal insulating phase to an EI phase when 
a i o G [ a + ( l / 3 ) ~ m Z ]  = 1. As argued above, this well defined transition is assumed to reflect 
the sharp but continuous increase in pi which a more rigorous analysis would reveal. 

Given a specific linear theory, we obtain G as a function of a+( 1/3)/3mZ. and knowledge 
of G is sufficient to follow the evolution of the impurity dipole moment, via (2.1) and (2.2). 
The final task, therefore, is to obtain expressions for m and a. For linear theories, (3.13) 
implies that c( j )  = C ( j )  . mo(j), and we thus rewrite (3.1 1) as 

(3.16) m(j) = mo(j) + Pao( j )  - c(j) - moo'). 
For a solvent site, it can be shown that 

B- 'ao( j )  * C ( j )  = G a ( i )  (3.17) 
and consequently, (3.16) and (3.12) reduce to 

m(j) = n o ( j )  + G d j )  .moo') 
a(j)  = ao( j )  + G a W  *ao(j). 

(3.18) 

(3.19) 
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Eguations (3.18) and (3.19) yield m(j) and a(j)  in terms of G G[u+(l/3),5’m2], which 
is sufficient to close the problem. 

The expression a + ( l / 3 ) p m 2  takes on a simple form when we consider a special, but 
common, situation. We suppose that the principal axes of a o ( j )  are mutually orthogonal, 
with one lying parallel to the permanent moment mo(j); a o ( j )  is hence diagonal, with 
component aoll parallel to the moment and components a o ~  perpendicular to the moment. 
Equations (3.18) and (3.19) then reduce to 

(3.20) 

3.2. Results 

We now give results appropriate to a solvent of polar polarizable molecules. As discussed 
above, for the linear theories that we consider, the sole difference resulting from the inclusion 
of permanent dipole moments on the solvent sites is the replacement of a by a + (1/3),5’mz 
in the corresponding calculation for a non-polar solvent. There is hence no qualitative 
difference between the polar and non-polar cases, and the trends described in section 2 are 
again observed. There is, however, a significant quantitative difference, arising from the 
fact that (1/3)pm; is appreciably larger than a0 for many polar solvents. For example, at 
263K (1/3),9ma = 19.88.) and a0 = 2 . ~ 4 ~  for ammonia: and (1/3),¶m; = 15.88.’ and 
a0 = 4.7A for methylamine [26]. For the present model, therefore, the probability of a 
Frenkel €1 phase is greatly enhanced for a polar polarizable solvent. 

As in section 2.2, we assume the reference interaction potential to be of hard-sphere 
form, with a hard-sphere diameter that is different for impurity-solvent and solvent-solvent 
interactions. For this reason, we again consider the MSA. The impurity dipole moment iS thus 
given by (2.1) or (2.3, and (2.21). with 6 replaced by &+(1/3)m*2, where m” = ,5’m2/u:. 
This replacement must also be employed in the calculation of C”. With the assumptions 
described before, we take B -k (1/3)m** to be given from (3.20). 

Since the qualitative trends are precisely as described in section 2, we present here only 
a limited series of example calculations. We take parameters appropriate to the alkali metals 
in methylamine at a single temperature and density. We stress that this is an illustrative 
calculation only, designed to show that a Frenkel E1 phase is a valid possibility. In no way 
do we intend to provide the final solution to the complex chemistry of these systems! 

Methylamine possesses a dipole moment of 1.31 D [26], and a scalar polarizability of 
4.78. 1261 (we neglect the anisotropy of the polarizability). We assume a temperature of 
263K, for which the density of methylamine is 0 . 6 9 9 g ~ m - ~  [27]. We must estimate a 
value for the hard-sphere diameter of methylamine, the quantity most prone to uncertainty. 
From the known bond lengths and angles [26], we adopt the rough estimate, uss = 4.2 A. 
With these parameters, we find p* = 1.002, tn; = 0.799 and &O = 0.063. 

From the solution of the MSA [21], we predict a dielectric constant of 10.4 at T = 263K 
for the pure solvent, which is reasonably close to the experimental value of 11.4 [26]. The 
ability of the MSA to reproduce the observed dielectric constant for a variety of liquids 
has been noted before (see, for example, [28]), and undoubtedly arises from a fortuitous 
cancellation. The MSA is known to underestimate the dielectric constant of a dipolar 
model liquid, but real liquids often have appreciable quadrupole moments which depress 
the dielectric constant to a value comparable with the MSA prediction. Our modelling of 
methylamine should not therefore be taken too seriously although, for whatever reason, it 

3 

3 
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does seem to reproduce the dielectric properties adequately. We note that the renmalized 
dipole moment and polarizability of the solvent molecule are m* = 0.886 and 2 = 0.070, 
showing a small increase on the unrenormalized values. 

The alkali metal atoms have polarizabilities of 24 A’ (Li), 24 A’ (Na), 43 A3 (K), 48 A3 
(Rb) and 60A3 (Cs) [20], and thus Gjo = 0.324 (Li), 0.324 (Na), 0.580 (K), 0.648 (Rb) 
and 0.810 (a). It is known F29.301 that the static structure factor of the alkali metals at 
their melting points can be fitted closely by the Percus-Yevick result for hard spheres at 
a packing fraction of 0.45. From the densities of the alkali metals at their melting oints, 

327A (Na), 4.08A (K), 4.40A (Rb) and 4.67A (Cs). The corresponding values of C are 
0.638 (Li), 0.779 (Na), 0.971 (K), 1.048 (Rb) and 1.112 (Cs). 

With the above parameters for the alkali impurities, we find a dipole moment p t /Mi  = 
0.296 for Li. and pi/Mi = 0.285 for CS, Na, K and Rb are predicted to be nondipolar. 
With Mi FX 6 0  (Li) and Mi FT 8 0  (Cs) [31], the predicted dipole moments for Li and Cs 
are 1.80 and 2.3D respectively. These dipole moments are significantly larger than that of 
the methylamine molecule. As discussed in section 2, a dipolar impurity state is favoured 
by a large impurity polarizability and a small impurity diameter. Clearly, Cs is dipolar for 
the former reason, and Li for the latter. The remaining alkali species, although predicted to 
be non-polar, are in fact close to the EI instability. 
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we may therefore estimate the following effective hard-sphere diameters: uii = 2.68 i ‘  (Li), 

4. Summary 

In this paper we have presented numerical results for the atomic dipole moment, 
characterizing the dipolar Frenkel EI phase, of an impurity in a liquid solvent. Because 
of the approximations employed, these calculations are expected to give merely a rough 
estimate of the situations in which a Frenkel EI phase may occur. As discussed in detail in II, 
however, the mean field approximation we have used is likely, if anything, to underestimate 
the occurrence of an El phase. For a non-polar solvent, we found (sections 2.1 and 2.2) an 
E1 phase for a few of the more favourable choices of parameters characterizing the solvent 
and impurity species. An El phase was found, however, to be much more likely for a polar 
solvent (see section 3). where the permanent moments of the solvent molecules significantly 
enhance the reaction field at the impurity. 

The experimental quantities that distinguish a Frenkel EI phase, and some competing 
effects that are not included in the model system, have been discussed in 11. It is clear 
from the results of this paper that an EI phase is favoured by a solvent that is dense, 
highly polar and highly polarizable, i.e. a high dielectric constant solvent. It is known 
[IO], however, that for solvents with a very high dielectric constant, the impurity often 
ionizes completely, an effect not included in the model. The best solvents are therefore 
likely to be those with an intermediate value of the dielectric constant. As an example, we 
selected parameters appropriate to the alkali metals in methylamine, and found that, at the 
temperature considered, a dipolar state would exist for Li and Cs. 

Acknowledgments 

This work was supported by British Petroleum VRU. MDW is also grateful for the award 
of a Research Fellowship from the Royal Commission for the Exhibition of 1851. Useful 
discussions with Professor P P Edwards and DI G Kahl are gratefully acknowledged. 



Frenkel El phase of impwiry system 3135 

Appendix. MSA solution for unequal impurity and solvent diameters 

The solution of the MSA for an isolated impurity atom in a solvent of different diameter 
can be obtained from the solution of the corresponding binary mixture in the limit that the 
concentration of the impurity species tends to zero. The MSA for a binary mixture of non- 
polarizable dipolar molecules, to which the current problem is formally equivalenf has k e n  
solved by Adelman and Deutch [32] for the case of equal hard-sphere diameters, and by 
Isbister and Bearman 1331 for the case of unequal diameters (see also 1341). The solution of 
Isbister and Bearman, in the appropriate limit was used by Nichols and Calef [351 to study 
the solvation dynamics of a dipole in a dipolar solvent within the MSA. With appropriate 
modifications, the results of Nichols and Calef can be used here. Since the context is rather 
different we give here a derivation of the result used in section 2.2. 

We denote the average reaction field factor appropriate to the isolated impurity in the 
solvent by Gis = Cui . For any linear theory, a graphical analysis of Gis leads to the 
following set of relations: 

d(R)T(R)H"(-R) (A.1) 

Here, p is the solvent density, a is the renormalized solvent polarizability, T(R) is defined 
in (U), ' ' denotes a spatial convolution, and H and C are the functions introduced by 
Wertheim [ 121. The superscript 'is' refers to a function connecting the impurity to a solvent 
molecule, and the superscript 'ss' refers to a function connecting two solvent molecules. 
The impurity-solvent and solvent-solvent H and C functions differ only in the required 
reference potential, and are identical in the limit of equisized hard spheres. Note that all 
contributions to G" are short-ranged, and the integrations may be extended over all space. 

Because of the symmetry of the dipoldpole interaction, we look for solutions of the 
form 

HiS(R) = HF(R)I + H;(R)To(R) (A.4) 

where To(R) = R3T(R), and with analogous expressions for HES(R), Cis(R) and C"(R). 
Inserting (A.4) into (A.1). we find 

m 
G" = 8 r p a  dR R-'HF(R) = 8xpaKiS (A.5) 

where KiS is thus defined. 

to 
Assuming the form of (A.4). equations (A.2) and (A.3) reduce in the standard way [I21 
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where H:, etc. are defined via 
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H,S = ~ i s ( ( 2 ~ ’ ~  - 2 ~ 5  

2; = ~ i s ( 2 ~ :  + HE) 
t 

H;“ = KU(2HT - 2 H 3  

2F = K“(2H;’+ H_”) 

and similarly for the C functions. The function kF(R) is given by 

(A.lO) 

(A.11) 

(A.12) 

(A.13) 

fiF(R) = HF(R) - 3 dR’R”*H;”(R’) (A.14) 

with analogous expressions for fip, e$ and e?,“. The transformation (A.14) has the inverse 

H;(R) = @(R) - - dR’R‘k;(R’). (A.15) 

The term K S s  is defined in terms of H;6(R) in an analogous way to (A.5), and a function 
Gss may correspondingly be defined. 

The above analysis applies to any linear theory. To obtain explicit solutions, however, 
we need to supplement the Omstein-Zemike analogues (A.2) and (A.3) with approximate 
closure relations, and we take those appropriate to the MSA (i.e. Wertheim’s SSCA [12] with 
the hard sphere gZ(R) taken to be a step function): 

SRm 
:3 Jd” 

H”(R) = 0 
HSs(R) = 0 R < 

Cir(R) = T(R) 

C“(R) = T(R) 

R c 01, 

R Z @i 

R > 4 s .  

(A.16) 

(A.17) 

(A.18) 

(A.19) 

Here, and U,, are the hard-sphere diameters defined in section 2.2. Using (A.4) and 
the subsequent transformations, these closure relations reduce to 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

Equations (A.6) and (A.8) for the + functions, together with the above closure relations, 
correspond to the Percus-Yevick equations for a binary hard-sphere mixture, for which 
one component (the solvent) is at an effective density of 6paKSS and the other component 
(the impurity) is at an infinitesimal density. The same situation holds for the - functions, 
except that the effective solvent density is now -3paK”. The Percus-Yevick equations 
for a binary hard-sphere mixture were first solved by Lebowitz [36], who gave analytical 
expressions for the direct correlation functions (in the present context, C$R) etc.) for R 
less than the hard-sphere radius. We now make use of these expressions. 

It is clear from (AS) that the aim is to calculate KIS, and a convenient route to this 
quantity is the following. Consider the appropriate expression (A.15) for C$(R), and 



Frenkel El phase of impurity system 3137 

for R > qs. Using the closure relations and the appqriate aansformation (A.l l), this 
expression reduces to 

(A.24) 

As stated above, C$(R) and C?(R) e the appropriate solutions of the Percus-Yevick 
equations for the mixture, 'With an effective solvent density of 6pcrKSS and -3pcrKSS 
respectively. We may thus write (A.24) as 

('4.25) 
K - 4 n p ~  = qiS(nppcuKSSUA) - ~"(-~TP(YK~~u; /~)  
K" 

where 

qis(q) = 1 - 2 4 ~ 0 : ~  dR RzCgy(R) (A.26) 

and C$y(R)  is the impurity-solvent Percus-Yevick direct correlation function for solvent 
packing fraction ?J = npu2/6. Relating Ki6 to Cis via (AS), and K" to GS similarly, we 
rearrange (A.25) to 

r 
(A.27) 

As stated previously, with equisized hard spheres the H and C functions are the same for 
both impurity-solvent and solvent-solvent cases. Hence, Css may be interpreted as the 
average reaction field factor for the impurity obtained in the equisized hard-spbere case: (Y 

is purely a property of the solvent, and is the same as for the equisized case. 
AI1 that remains, therefore, is to find an expression for qis(q) .  Integrating over the 

Percus-Yevick expression [36] for the impurity-solvent direct correlation function in the 
limit of zero impurity density, one finds the following expression for qis(q) in terms of the 
ratio x = q,/uss: 

where the coefficients are given by 

(A.29) 

(A.30) 

(A.31) 

Note that, although the Lebowitz solution [36] yields different expressions for C$y(R) for 
the cases X c 1 and X > 1 ,  the resulting expressions for q"(q) are identical. The final 
equations for Cis, (A.27HA.31). can be shown to be equivalent to (6) oF[35]. 
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